A nonparametric empirical Bayes framework for large-scale multiple testing.

نویسندگان

  • Ryan Martin
  • Surya T Tokdar
چکیده

We propose a flexible and identifiable version of the 2-groups model, motivated by hierarchical Bayes considerations, that features an empirical null and a semiparametric mixture model for the nonnull cases. We use a computationally efficient predictive recursion (PR) marginal likelihood procedure to estimate the model parameters, even the nonparametric mixing distribution. This leads to a nonparametric empirical Bayes testing procedure, which we call PRtest, based on thresholding the estimated local false discovery rates. Simulations and real data examples demonstrate that, compared to existing approaches, PRtest's careful handling of the nonnull density can give a much better fit in the tails of the mixture distribution which, in turn, can lead to more realistic conclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold

In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...

متن کامل

On a Problem of Robbins

Robbins’s visionary 1951 paper can be seen as an exercise in binary classification, but also as a precursor to the outpouring of recent work on high-dimensional data analysis and multiple testing. It can also be seen as the birth of empirical Bayes methods. Our objective in the present note is to use this problem and several variants of it to provide a glimpse into the evolution of empirical Ba...

متن کامل

Comment: Microarrays, Empirical Bayes and the Two-Group Model

Professor Efron is to be congratulated for his innovative and valuable contributions to large-scale multiple testing. He has given us a very interesting article with much material for thought and exploration. The twogroup mixture model (2.1) provides a convenient and effective framework for multiple testing. The empirical Bayes approach leads naturally to the local false discovery rate (Lfdr) a...

متن کامل

A comparison of the Benjamini - Hochberg procedure with some Bayesian rules for multiple testing ∗

In the spirit of modeling inference for microarrays as multiple testing for sparse mixtures, we present a similar approach to a simplified version of quantitative trait loci (QTL) mapping. Unlike in case of microarrays, where the number of tests usually reaches tens of thousands, the number of tests performed in scans for QTL usually does not exceed several hundreds. However, in typical cases, ...

متن کامل

Parametric and nonparametric FDR estimation revisited.

Nonparametric and parametric approaches have been proposed to estimate false discovery rate under the independent hypothesis testing assumption. The parametric approach has been shown to have better performance than the nonparametric approaches. In this article, we study the nonparametric approaches and quantify the underlying relations between parametric and nonparametric approaches. Our study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2012